Chemosensory deprivation in juvenile coho salmon exposed to dissolved copper under varying water chemistry conditions.

نویسندگان

  • Jenifer K McIntyre
  • David H Baldwin
  • James P Meador
  • Nathaniel L Scholz
چکیده

Dissolved copper is an important nonpoint source pollutant in aquatic ecosystems worldwide. Copper is neurotoxic to fish and is specifically known to interfere with the normal function of the peripheral olfactory nervous system. However,the influence of water chemistry on the bioavailability and toxicity of copper to olfactory sensory neurons is not well understood. Here we used electrophysiological recordings from the olfactory epithelium of juvenile coho salmon (Oncorhynchus kisutch) to investigate the impacts of copper in freshwaters with different chemical properties. In low ionic strength artificial fresh water, a short-term (30 min) exposure to 20 microg/L dissolved copper reduced the olfactory response to a natural odorant (10(-5) M L-serine) by 82%. Increasing water hardness (0.2-1.6 mM Ca) or alkalinity (0.2-3.2 mM HCO3-) only slightly diminished the inhibitory effects of copper. Moreover, the loss of olfactory function was not affected by a change in pH from 8.6 to 7.6. By contrast, olfactory capacity was partially restored by increasing dissolved organic carbon (DOC; 0.1-6.0 mg/L). Given the range of natural water quality conditions in the western United States, water hardness and alkalinity are unlikelyto protect threatened or endangered salmon from the sensory neurotoxicity of copper. However, the olfactory toxicity of copper may be partially reduced in surface waters that have a high DOC content.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-level copper exposures increase visibility and vulnerability of juvenile coho salmon to cutthroat trout predators.

Copper contamination in surface waters is common in watersheds with mining activities or agricultural, industrial, commercial, and residential human land uses. This widespread pollutant is neurotoxic to the chemosensory systems of fish and other aquatic species. Among Pacific salmonids (Oncorhynchus spp.), copper-induced olfactory impairment has previously been shown to disrupt behaviors relian...

متن کامل

A sensory system at the interface between urban stormwater runoff and salmon survival.

Motor vehicles are a major source of toxic contaminants such as copper, a metal that originates from vehicle exhaust and brake pad wear. Copper and other pollutants are deposited on roads and other impervious surfaces and then transported to aquatic habitats via stormwater runoff. In the western United States, exposure to non-point source pollutants such as copper is an emerging concern for man...

متن کامل

Sublethal effects of copper on coho salmon: impacts on nonoverlapping receptor pathways in the peripheral olfactory nervous system.

The sublethal effects of copper on the sensory physiology of juvenile coho salmon (Oncorhynchus kisutch) were evaluated. In vivo field potential recordings from the olfactory epithelium (electro-olfactograms) were used to measure the impacts of copper on the responses of olfactory receptor neurons to natural odorants (L-serine and taurocholic acid) and an odorant mixture (L-arginine, L-aspartic...

متن کامل

A top-down survival mechanism during early marine residency explains coho salmon year-class strength in southeast Alaska

their year-class strength is necessary from both scientific and management perspectives. We examined correlations among juvenile coho salmon indices, associated biophysical variables, and adult coho salmon harvest data from southeast Alaska over the years 1997–2006. We found no relationship between summer indices of juvenile coho salmon growth, condition, or abundance with subsequent harvest of...

متن کامل

Comparative thresholds for acetylcholinesterase inhibition and behavioral impairment in coho salmon exposed to chlorpyrifos.

Chlorpyrifos is a common organophosphate insecticide that has been widely detected in surface waters that provide habitat for Pacific salmon in the western United States. Although chlorpyrifos is known to inhibit acetylcholinesterase (AChE) in the brain and muscle of salmonids, the relationship between sublethal AChE inhibition and more integrative indicators of neuro-behavioral impairment are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 42 4  شماره 

صفحات  -

تاریخ انتشار 2008